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X-ray diffraction techniques have been used to study plastic deformation in a 
polycrystalline Ag-30 at.% Cd alloy under tensile load. The positions and shapes of all 
(hkl) reflections were recorded using a parafocusing arrangement up to a maximum true 
strain of 0.265. The effects on the peak displacements caused by stacking faults and by 
macroscopic strains normal to the surface were distinguished. The longitudinal true stress 
in the surface layer evaluated by least square analysis was smaller than the macroscopic 
flow stress by an approximately constant amount over the whole range of strain (in accord 
with previous observations of a stress gradient near a free surface); the apparent rate 
of work hardening in the surface was equal to that for the specimen as a whole. The 
stacking fault probability c~ was approximately a linear function of strain and attained a 
maximum value of 7 x 10 -3 . 

Fourier analyses were performed on the profiles of (111) - (222) and (200) - (400) pairs 
of reflections. The effective particle sizes De(111) and De(100) and the estimated true 
domain size D decreased approximately inversely with increasing strain, tending to limiting 
values at high strains of 220, 150 and 300A respectively. Similarly, the microscopic strains 
[{EL~},k,*] ~ tended to limiting values at high mechanical strains. The twin fault 
concentration was found to be negligibly small. The particle size and microstrain par- 
ameters were compared with values for cold-worked filings of the alloy. A plot of ~ against 
(~L~=,oA},,,* for the solid specimens and for the filings was linear and yielded a 
stacking fault energy for Ag-30 at. % Cd of 6.1 ergs/cm 2. 

1. I n t r o d u c t i o n  
Analysis of the changes in the positions and 
shapes of X-ray powder pattern peaks provides 
a useful technique for studying quantitatively the 
microstructure and state of strain resulting from 
the plastic deformation of metallic materials 
[1-3]. Peak broadening may be caused by 
coherently diffracting domains less than 1000A 
diameter, non-uniform microstrains within these 
domains and deformation faults [1, 2]. Changes 
in the peak positions may be due to applied or 
residual macroscopic stresses, stacking faults 
[4] and, in certain cases, to changes in lattice 
parameter produced by the redistribution of 
solute atoms [5]. Twin faulting in crystallites also 
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gives rise to asymmetry of peaks [3 ]. By careful 
measurement and analysis it is possible to 
separate quantitatively the microstrain and 
particle size contributions to the peak broaden- 
ing and the macrostrain and stacking fault 
contributions to the peak displacement. More- 
over, further analysis of the relationship between 
the derived faulting and microstrain parameters 
enabled an estimate of the stacking-fault energy 
of the material to be made [6]. 

Although much of the information obtained is 
indirect, X-ray techniques are a useful comple- 
ment to electron microscopy in this field. They 
are~ non-destructive and are not subject to 
systematic errors which may result from the 
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chemical thinning of foils. Moreover, the volume 
of material sampled by an X-ray beam is many 
orders of magnitude greater than that observed 
in an elecron microscope and so there is a 
reduction in volume-dependent errors. 

Most of the X-ray studies of deformed metals 
and alloys have concentrated either on the peak 
broadening or on the peak displacement and 
usually after unloading of the specimen. More- 
over, much of the work in which a simultaneous 
determination was made of stress and change in 
structure was concerned with compressed 
powders [7-10] which are of limited practical 
importance, compared with bulk polycrystalline 
material. The majority of the X-ray measure- 
ments of stress have shown that the effective 
stress in the surface region penetrated by the 
radiation is lower than the average stress applied 
to the specimen [7, 8, 10-12] although, in some 
cases, only one or two reflections were used and 
some uncertainty existed about the appropriate 
values of planar elastic constants. There is 
experimental evidence, other than X-ray diffrac- 
tion, to support the existence of a lower stress in 
the surface [13-15] but, on the other hand, it 
contradicts the interpretation placed on the 
results of other experiments, notably those of 
Kramer et al [16], where it was concluded that a 
hardened layer is present at the surface of 
deformed crystalline material. 

The present work was undertaken in order to 
study: 
(i) the changes in lattice parameter as a function 
of elongation of a specimen, while it was under 
load and using all the available X-ray reflections, 
in an attempt to resolve the controversy regard- 
ing the state of stress in the surface of deformed 
material. 
(ii) the microstructural changes brought about 
by plastic deformation of a bulk polycrystalline 
alloy having a low stacking fault energy. 

The Ag-30 at. ~ Cd alloy was chosen partly 
because it was known to have a low stacking- 
fault energy [5, 38] and partly because cadmium 
has approximately the same scattering power as 
silver, so that any asymmetrical effect on the 
diffraction profiles due to unequal scattering 
powers of the (1 1 1) faulting planes would be 
minimised [17]. This followed on a similar study 
made earlier in this laboratory no an Ag-9 at. 
Sn alloy [18, 19] in which the analysis of the 
data was complicated by large decreases in the 
true lattice parameter, apparently due to solute 
segregation. It was expected, from experience 
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with filings [5], that this effect would be largely 
avoided in this alloy. Bragg-Brentano focusing 
geometry was used in conjunction with flat 
tensile specimens, since this method gives less 
instrumental broadening than the non-focusing 
Debye-Scherrer geometry. Fourier analysis of 
line broadening was preferred to integral breadth 
analysis, since the former yields more detail of 
the microstrain distribution and no assumption 
is required about the shapes of the peaks. 

2. Experimental Procedure 
Ingots of the Ag-30 at. ~ Cd alloy were prepared 
by melting together 99.99~ pure silver and 
cadmium in vacuum-sealed quartz tubes. These 
ingots were alternately cold-rolled and annealed 
to attain a thickness of 0.063 in. and flat tensile 
specimens, having gauge lengths of rectangular 
section (0.2 in. wide x 0.030 in. thick) and 
length 1.5 in., were machined from them. They 
were then given a final anneal at 400~ for 1 h 
resulting in a grain size of approximately 30 #m. 
Back-reflection photographs were taken to 
confirm that they were fully annealed. 

The annealed specimen was mounted hori- 
zontally on to a miniature tensile machine 
(designed by Materials Research Corporation, 
Orangeburg, New York) [18]. Tension on the 
specimen was provided by the compression of a 
spring, which had been calibrated on an Instron 
tensile machine; compression of the spring and 
the change in length of the specimen were 
registered by means of dial gauges. The tensile 
machine was mounted on a G.E. XRD-5 
diffractometer, so that the flat surface of the 
specimen was tangential to the focusing 
circle. 

The specimen was deformed slowly up to a 
maximum of about 31 ~ elongation, X-ray 
measurements being made at intervals of between 
2 and 6 ~  elongation. All available reflections 
from the silver alloy specimen (between (1 1 1) 
and (511) - (3 3 3)) were measured at 27 ~ C with 
fi-filtered CuK~ radiation using a 3 ~ divergence 
slit, a medium resolution Soller slit and 0.1 ~ 
receiving slit. The line profiles of the annealed 
sample and the strong reflections of the cold- 
worked sample were recorded continuously 
using a ratemeter and recorder; a step-scanner 
and printer were used for the weak reflections. 
Careful attention was given to aligning the 
diffractometer and this was checked at alternate 
states of elongation by brushing a thin layer of 
annealed aluminium powder on to the specimen 
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surface and measuring the peak positions from 
all available reflections. 

Separation of the K~ doublet was performed 
by the Rachinger method [3]. The accuracy of 
the peak maximum determination for the 
deformed specimen was about + 0.02 ~ in 20 for 
low-angle peaks up to and including the (31 1) 
reflection and + 0.05 ~ for other peaks. The 
Fourier coefficients of all K~ 1 reflections from 
the deformed specimen were obtained by the 
Stokes method [3 ] using the annealed sample as a 
standard. 

:3. Analysis of the Diffraction Data 
.3.1. Peak Shifts due to Geometrical Factors, 

Stacking Faults and Macroscopic 
Stresses 

For the focusing geometry of the diffractometer, 
the lattice parameter ankl of a specimen, in 
which a longitudinal macro-stress and stacking 
faults are present, is given by [3]: 

alakl = a o + aoO~Ghkl + aoefJhkl + ao(S1)laklCr + 
tacos0 cot0 (1) 

where a 0 is the true lattice parameter; 
= c~' - c~", where c~' and cJ are the intrinsic 

and extrinsic stacking-fault probabilities; Ef is the 
fractional change in lattice parameter at the 
faults; a is longitudinal stress in the specimen; 
Ghkl and JhkI [3] are constants dependent on the 
indices of the reflecting planes, (S1)hkl is the 
elastic compliance for the (hkl) planes in a 
polycrystalline aggregate (S 1 = - v/E where v 
is Poisson's ratio and E is Young's modulus). 
The last term mcos0 cot0 is a misalignment term 
where 0 is the diffraction angle for the (hkl) 
planes and m is a constant dependent on the 
displacement of the sample from the focusing 
circle. 

Several approximate methods for calculating 
the elastic compliances of polycrystalline aggre- 
gates from the single crystal elastic compliances 
s~j have been proposed but the simplest approxi- 
mation, which was used in the present work is to 
take the arithmetic mean of the extreme values 
given by the models of Voigt [20] and Reuss [21 ]. 
Markham [22] has shown that for a number of  
metals and alloys the mean value agreed to better 
than _+ 2% with the experimental value (and 
with the value given by Kr6ner's model which 
was the most rigorous approach of all the models 
:and which gave the best agreement with experi- 
ment). 

Voigt assumed constant strain in the grains of 
the polycrystal, so that: 

(81) v = 2So($11 q- 2512 ) q- 5S12S44/(6S o 4- 5S~4 ) 

Reuss assumed constant stress in all grains, 
so that: 

(S1)P~hk 1 = S12 "]- SOP 
where 

$44 
So = $11 - -  $12 2 

and 
1" = (h2k 2 + k212 + h2l=)l(h ~ + k 2 + P) 

The sij for a number of silver-based alloys [37] 
were found to be approximately linear functions 
of valence-electron concentration e/a and those 
for the Ag - 30 at. % Cd alloy were obtained by 
linear extrapolation to e/a = 1.3. These and the 
derived value of (81) V, (S1)RhRI and (S1)hkl = 
[(S0v + (S1)~hkl]/2 are given in table I. 

For each state of strain of the tensile specimen 
the values of the five unknowns in equation 1, a0, 
~, e,, ~r and m were determined by setting up 
equations for all the available ahkl (usually ten) 
and making a least squares analysis. (It was 
assumed that the scatter was due only to c~, ee 
and ~). 

The stress GA could also be estimated directly 
from the lattice parameter aavp obtained by 
extrapolating to cos0 cot0 = 0 a straight line 
through the points (at 11 ~- 2a2 o 0)/3 and 
(a331 + a~20)/2. I f  (S1)A is the average of all 
(S0nkl (=  - 0.524 x 10 -12 cm2/dyne) then: 

a~p - ao _ ~A(SOA (2) 
a0 

At the highest strain imparted to the specimen, 
the stress was also determined independently by 
the commonly used "psi" method in which the 
specimen is rotated about the vertical axis of the 
diffractometer so that the X-rays are diffracted by 
planes not parallel to the surface, and the 
apparent change in the lattice parameter ankl 
measured as a function of angle ~ [23 ]. Elasticity 
theory gives : 

a~p --  a•  
- -  (S~/2)hkl �9 G .  sin 2 r (3) 

ao 

where ar is the measured lattice parameter for 
hkl planes whose normal is at an angle r to the 
surface normal and a• is the lattice parameter 
measured for the hkl planes parallel to the 
surface. ( • / 2 ) h k l  = (1 + Vhka)/Ehkl. 

A high angle reflection (422) was used for high 
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T A B L E  I Values of the constants Ghkh dhkl, (S~)hkt R, (s0V,(S0hkL and (S2/2)42zused in the evaluation of stresses and 
stacking fault probabilities in Ag-30 at.~/o Cd. 

hkl G..1 Jhkl Vhkl -- (SO R - (S~)hk~ (Sd2)nk~ 
( • 10 ~ c rn~/dyne)  ( • 10 ~ c m Z / d y n e )  ( • l 0  ~ c m ~ / d y n e )  

l 11 - 0 . 0345  0 . 2 0 9  0 .43  0 .245  0 . 3 2 0  

2 0 0  0 . 0 6 8 9  - 0 . 1 6 7  1.01) 1.19 0 . 7 9 2  

2 2 0  - 0 .0341  - 0 . 1 6 7  0 .481 0 .438  

311  0 . 0 1 2 5  0 . 0 3 8  0 . 7 4 5  0 . 5 7 0  

2 2 2  0 . 0 1 7 2  0 . 2 0 9  0 . 2 4 5  0 . 3 2 0  

4 0 0  - 0 . 0 3 4 5  - 0 . 1 6 7  1.19 0 . 7 9 2  

3 3 1  - 0 .0073  - 0 . 1 6 7  0 .413  0 . 4 0 4  

4 2 0  0.0~)69 0 . 2 3 4  0 . 7 3 7  0 . 5 5 5  

4 2 2  0 - 0 . 1 6 7  0 .481  0 . 4 3 8  1 .695  

5 1 1  " /  0 . 0 0 2 9  - 0 . 0 1 0  0 . 8 0 5  0 . 6 0 0  
3 3 3 f  

- (SO v = 0 . 3 9 5  • 10 ~2 c m 2 / d y n e  
S ing l e  c r y s t a l  e l a s t i c  c o n s t a n t s  : 
S .  = 2 .76  • 10 -~2 c m 2 / d y n e  
$12 = 1.19 • 10 -1~ c r n 2 / d y n e  
$ 4 ~ -  2 .23 • 10 -a2 c r n = / d y n e  

sensitivity and a422 measured at ~b = 0 ~ 23 ~ 
and 40 ~ The receiving slit was set at a fixed 
optimum position for the range of ~b covered, 
since the position of the focal point of the 
diffracted beam is a function of ~b and, also, an 
absorption correction tan~bcot0 was applied, 
prior to the determination of the maxima of the 
very broad (422) reflections. 

a.2. B r o a d e n i n g  of the  Peaks  

The profile P2o of  a powder pattern peak, 
corrected for instrumental broadening, can be 
expressed as a Fourier series [1]: 

+co 

P~oo( ~ {A(L)cos[4rrL(sin0 - sin0o)/A ] + 
L ~ - - o o  

B(L) sin [4rrL(sinO - sin00)/A ] } 

where A(L) and B(L) are the sine and cosine 
coefficients, respectively, L is the distance normal 
to the reflecting planes, 00 is the position of the 
peak maximum and 2, is the wavelength of the 
radiation. When 00 is taken as the origin of the 
Fourier transformation and when L, o~ and/3 (the 
twin-fault probability) are small, A(L) can be 
expressed [2] as: 

lnA(L) = lnA]'(L) - 2~2(L~/aoO-)hò "((eL ~) - 
(eL)~)h~l (4) 

The particle size term A•(L) is independent of 
the order of the reflection whereas the second 
term relating to the standard deviation of the 
microstrain distribution, ((eL") - (EL)~)hkl ~, is 
proportional to the square of the order 
ho ~ = h z + k z + 12. Hence, by plotting lnA(L) 
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versus h0 z for two orders of reflections from the 
same planes, e.g. (111) and (222), the two 
contributions can be separated. This was per- 
formed for the (100)  and (111)  directions. 

The effective particle sizes De (111) and 
De (100) given by the negative initial slopes of 
the A(L) versus L plots can be expressed in terms 
of the true domain size D(hkl) and the stacking 
and twin-fault parameters ~ and fi, thus: 

1~De (111) = 1/D (l 11) + (~/3/4a) (1.5~ + /3) 
. . . . .  (5) 

l/De (100) = 1/D (100) + (l/a)(1.5~ + /3) (6) 

Most of the calculations, including Rachinger 
separation of Kcq and K~,  determination of the 
positions of the peak maxima, solution of a0, 
aapv, ~, e~, e and m from equation 1, Fourier 
analyses of the broadened peaks and Stokes 
correction for instrumental broadening, were 
performed using programmes written in Fortran 
for IBM 7094 and 360 computers. 

4. Experimental Results 
4.1. La t t i ce  P a r a m e t e r s  

Initially, the lattice parameters of annealed and 
cold-worked filings were measured for the 
purpose of comparison. The extrapolated lattice 
parameter of the as-filed material was found to 
be very slightly smaller (0.2%) than that of the 
annealed filings, possibly due to segregation of 
some solute atoms to stacking faults, since least 
squares analysis of the peak displacements 
indicated that no net residual macroscopic stress 
was present. 
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#igure I Lattice parameters ahkl against cos0 cot0 of bulk 
Ag-30 at.~/o Cd deformed in tension to various strains. 

The lattice parameters ahkl of the Ag-30 at. % 
'Cd alloy in the initial annealed state and at 
various stages of the tensile deformation are 
plotted against cos0 cot0 in fig. 1. The scatter of  
the points for the specimen in the deformed state 
reflects the combined effects of stacking faults 
and compressive lattice strain normal to the 
surface. 

The tensile stresses computed by least squares 
analysis of the ahki data using equation 1 are 
plotted as a function of true strain in fig. 2. (The 
true tensile strain Etrue is related to the measured 
engineering strain eeng by Etrue = ln(1 + Eeng). 
Also shown in fig. 2 is the macroscopic true 
stress-true strain curve measured with the 
miniature tensile machine; this curve was 
essentially in agreement with a test performed on 
a similar annealed sample of this material with 
an Instron tensile testing machine. Allowing for 
the uncertainty of about + 3 kg/mm ~, the 
computed X-ray stress-strain curve shows a long, 
linear work-hardening region typical of a low 
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Figure 2 Comparison of computed X-ray surface stress- 
es with the mechanical stress-strain curve for the tensi le 
specimen. 

stacking-fault energy material with a slope 
similar in magnitude to that observed in the 
mechanical test, but with the X-ray stress being 
lower than the applied stress by 6 to 7 kg/mm ~ 
over the whole range of strain. 

The tensile stresses aA calculated from 
aapp - a0 using equation 2 are summarised as 
the dashed curve in fig. 2; these are in good 
agreement with those given by the least squares 
analysis at strains up to 0.1 but are 10 to 15% 
lower at higher strains�9 The true lattice para- 
meter ao decreased by up to 0.06 % in the initial 
stages of the deformation but stabilised to a 
value, on average, about 0.02 % below that for 
the annealed specimen, a0 ann, as the deformation 
proceeded. 

The lattice stress determined by the "psi" 
method for the highest strain, 28 kg/mm 2, 
compares favourably with the corresponding 
least squares a, 27 kg/mm 2, and is again smaller 
than the mechanical stress by about double the 
uncertainty in the measurement. 

The stacking-fault probability c~ increases 
progressively, and almost linearly, with increas- 
ing true strain as is shown in fig. 3. Values 
calculated by the method of slopes [24], also 
shown, are slightly lower. The maximum value of  
a achieved by the bulk specimen (0.007) is 
lower by a factor of 2.5 than the value for the 
cold-worked filings (0.018). 

4.2. F o u r i e r  A n a l y s i s  
The effective particle sizes De(hkl) in the ( l  1 1) 
and (100)  directions, obtained from the initial 
slope of the strain-corrected Fourier coefficients 
AP(L), are plotted against true strain in fig. 4. 
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Figure 3 Stacking-fault probability c~ as a function of true 
strain for the bulk alloy, c~ for the cold-worked f i l ings is 
also shown for comparison. 
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Figure 4 Effective particle sizes D o (hkl) and the true 
domain size D as a function of true strain for the bulk 
specimen and for the cold-worked fi l ings. 

The results for the <100) direction at high 
strains are subject to greater uncertainty than 
those for the (111) direction since the (400) 
profile was very weak and diffuse. Indeed, it was 
observed that the (200) and (400) reflections 
were somewhat weaker and the (111) and (220) 
reflections somewhat stronger relatively than 
would be predicted for random powders which is 
consistent with a {110} (112) texture [25] being 
introduced during the preparation by rolling of 
: the specimen. 

The De(hkl) are anisotropic and are approxim- 
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ately inversely proportional to the true strain, the 
diameter decreasing rapidly in the initial stage of 
straining but tending to level off as the .deforma- 
tion proceeds. This is similar to the observations 
of Otte and Adler [26] on c~-brass and Wagner 
et al [8] on compressed copper sheet and filings. 
The ratio De (111)/De(100) for the bulk 
specimen remained about 1.5 over the entire 
range of strain compared with the value of 1.95 
observed for the filings. 
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I I I 1 I I . f f  

~ 1 7 6  l , . . . .  , f /  '1! 
~-s oo4 ! 

0 0 0 4  O'OB 0.12 0"16 0";20 0"24 s~ FILINGS 
TRUE STRAIN 

Figure 5 Standard deviation of the microstrain distr ibution 
[(EL2)hkl*] ~ as a function of true strain for the bulk alloy 
and for the fi l ings. 

The standard deviation of the microstrains 
normal to the reflecting planes (which, hence- 
forth, we shall denote by [(eL2)hkl * ]~, calculated 
from the slopes of the InA(L) versus h02 plots 
(equation 4) decreased asymptotically with 
increasing L which, in effect, reflects the strain 
distribution around a dislocation. The variation 
of [@L2)hkl*] ~ with deformation for L = 50A 
and L = 100A in the (111) and (100) direc- 
tions is shown in fig. 5; they increase fairly rapidly 
in the initial stages but level off as the deforma- 
tion proceeds, in harmony with the changes in 
De(hkl). As for the De(hkl), they are anisotropic, 
[ ( E L )  1 0 O * ]  i- being approximately twice as great 
as [(eL2)*tzl] ~. The shape of the plot of 
[(EL2=50~,)100"] ~ against true strain bears a 
close resemblance to that of the derived X-ray 
flow curve in fig. 2. 

Twin fault probabilities given by analysis of  
the asymmetry of the diffraction profiles were 
found to be negligibly small. 
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5. D i scuss ion  
5.1. X-Ray Stress Measurement 
The longitudinal stress derived from the X-ray 
data by least squares analysis of the displace- 
ments of all the peaks is smaller than the true 
applied stress, i.e. the average macroscopic flow 
stress, by a constant amount which is a factor of 
two greater than the estimated uncertainty in the 
former. At the highest strain of 0.265, the stress 
given by the "psi" method, which should be 
independent of the effects of stacking faults for 
the (422) reflection, is an excellent agreement 
with the least squares calculation. As far as the 
present authors are aware, this represents the 
first attempt to compare these two methods of 
stress determination, although previous measure- 
ments utilising, independently, the "psi" method 
on nickel samples [11, 12] and least squares 
analysis on Ag-9 at. ~ Sn samples [18] have 
shown the surface longitudinal stresses to be 
considerably lower than applied stresses in 
specimens under tension. However, it is rather 
surprising to find that the rate of work hardening 
in the surface is similar to the average rate for the 
whole specimen. 

Although the elastic constants for the present 
alloy are believed to be in error by not more than 
+ 2 ~,  as a test, the least squares X-ray stresses 
were calculated using, in the extreme case, the 
single crystal elastic constants of pure silver. 
These are summarised as the double dashed line 
in fig. 2; the X-ray flow curve is now rather 
improbable since there is good agreement with 
the mechanical stress at high strains but poor 
agreement at low strains and resulting in a greater 
rate of work hardening in the surface. 

The stresses era calculated from (aapp - a0), in 
which the aapp were estimated from the positions 
of only four of the reflections, are less reliable 
than those calculated by least squares analysis. 
The stress-strain relationship given by this 
method is similar to that observed by Kolb and 
Macherauch [11 ] in which the difference between 
the X-ray and applied stress increases with 
increasing deformation, unlike the constant 
difference given by the least squares analysis. 

In the work of Otte and his co-workers [24, 26] 
the X-ray stresses were determined by the 
method of equation 2. The X-ray stress-strain 
curves were fitted to the mechanical flow curves; 
for silicon bronze, good correspondence was 
obtained when the elastic compliances were 
chosen so that, instead of being the mean of 
Reuss and Voigt values, they were weighted 90 

Voigt/10 Reuss. For o-brass, the weighting 
required for the best fit was 75 Voigt/25 Reuss. 
Clearly, since the Voigt elastic compliance is 
smaller than the average Reuss compliance in 
each case, a 50/50 weighting would have given 
smaller X-ray stresses, consistent with the 
present work. On unloading the c~-brass speci- 
mens, residual tensile surface stresses were 
observed, in contradiction with previous observa- 
tion of residual compressive surface stresses 
[11, 12, 23]. Stresses were calculated by Otte 
from the quantity (aavp - a o a n n ) ;  if a 0 decreased 
with increasing deformation, as might be possible 
in alloys which fault profusely and as indeed 
happens, in the present case, the surface stresses 
would be overestimated and, in the extreme case, 
might result in the residual stresses appearing to 
be tensile. Experience with cold-worked a-brass 
filings [27] does not, however, lend support to a 
possible decrease in at. 

The X-ray evidence appears then to be over- 
whelmingly in favour of a lower effective stress 
existing in the surface of deformed crystals than 
in their interior. Unfortunately, the X-ray 
studies of themselves do not provide much in- 
sight into the effective depth of this surface layer, 
in which the stress is lower than the average, 
except in so far as it is probably of the same order 
as the effective depth of penetration of the 
radiation (about 20/xm). Efforts have been made 
[28] to determine the surface stress in steel using 
radiation of different wavelengths, and thus 
having different degrees of penetration, but the 
results were somewhat inconclusive. 

There is much experimental evidence to 
support the X-ray results. Kolb and Macherauch 
[11 ], during etching experiments in support of 
their X-ray study of nickel under tension, showed 
that the dislocation density was considerably 
smaller in the surface region than in a region 0.3 
mm below and, subsequently [12], showed that 
the distribution of residual stress in a deformed 
specimen was inhomogeneous up to a depth of 
150 tzm below the surface. They concluded that 
the less severe work hardening in the surface 
resulted simply from the surface grains being 
under less constraint with regard to slip processes. 
The conclusions of the electron microscopic 
study of Swann [13 ] on deformed polycrystalline 
copper and the flow stress measurements and 
electron microscopy of Fourie [14, 29] on 
deformed single crystals of copper are also 
qualitatively in agreement with the present work. 
Fourie demonstrated that a soft region extended 
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T A B L E  II Engineering strain, true strain, true applied stress, lattice parameters aap p and a o and deformation fault 
probability (1.5 c~ -F/3) in Ag-30 at .% Cd, deformed in tension. 

Eng. strain True strain True applied aavp ao Aa = aapp - a0 (1.5a +/3) 
stress (A) (/~) (/~) • 104 (•  l0 s) 
(kg.mm -2) 

Ann. 0 0 4.15095 4.15095 0 
0.06 0.0006 4.1496 4.1510 14 
2.05 0.02 13.0 4.1482 4.1491 9 6.2 
4.1 0.041 15.3 4.1472 4.1487 15 7.5 
6.2 0.062 17.3 4.1467 4.1489 22 8.0 
8.9 0.089 19.9 4.1468 4.1490 22 9.2 

11.5 0.115 22.4 4.1457 4.1500 43 9.7 
14.2 0.137 24.6 4.1476 4.1502 26 10.2 
17.2 0.168 27.6 4.1462 4.1492 30 10.8 
21.1 0.195 30.1 4.1472 4.1507 35 11.3 
24.9 0.225 32.4 4.1460 4.1506 46 12.3 
30.9 0.265 34.1 4.1455 4.1501 46 13.9 

to a depth as great as 2 mm below the surface, at 
least in a single crystal, although in a polycrystal- 
line material one would not expect the soft region 
to extend as far. Further support for the exist- 
ence of a soft surface layer is provided by 
Brydges [15] and Block and Johnson [30]. The 
present observations and the supporting evidence 
cited above therefore contradict the interpreta- 
tion placed by Kramer et al [16] on the experi- 
ments of Kitajima et al [31] in which it was 
concluded that a hardened layer is found at the 
surface of plastically deformed crystals. 

5.2. Particle Sizes and Microscopic Strains 
As shown in equations 5 and 6, the effective 
particle sizes De(hkl) are inversely proportional 
to ~ (when 1/D is either negligibly small or iso- 
tropic and a linear function of true strain e) and 
since, by observation (fig. 3), ~ is directly 
proportional to e, we expect De(hkl) to be 
proportional to e-1. This is found to be approxi- 
mately the case for both the (100) and (111) 
directions, as shown in fig. 4. 

If deformation faults are entirely responsible 
for the anisotropy of De(hkl), i.e. the true 
domain or cell size D is very large, then the 
theoretical ratio of De(111)/De(100), given by 
equations 5 and 6, would be 2.3. Allowing for 
experimental uncertainty, this is seen to be the 
case for the filings where the ratio is 1.95. The 
lower ratios of about 1.5 for the bulk specimen 
suggest that one or more factors, in addition to the 
faulting, are contributing to the anisotropy. 
Values of D and of the compound fault prob- 
ability (1.5o~ + 13) were calculated, assuming D 
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to be isotropic. The values of D are plotted 
against true strain in fig. 4. The magnitude of D 
is realistic, tending to a limiting value of 300A 
which is of the same order as the average 
distance between dislocations in a cold-worked 
lattice. The dependence of D on applied strain is 
similar to that of De(hkl). 

Values of (1.5~ + /3) for the tensile specimen 
are slightly larger than the corresponding values 
of 1.5~ calculated from the peak displacement. 
This could be interpreted as indicating the 
presence of a small concentration of deformation 
twin faults but, since the analysis of diffraction 
profile asymmetries indicated negligible concen- 
trations, the difference probably arises from a 
rolling texture (which was mentioned in section 
4) so that the dislocation arrangement, and hence 
the true particle size, are anisotropic. 

For the filings, the value of (1.5~ + /3) is 0.048 
compared with 1.5~ = 0.028 calculated from 
peak shifts. The difference between these two, 
0.020, can be attributed to twin faults and 
compares favourably with the value of twin fault 
probability, 0.025, calculated from peak asym- 
metry. 

The evidence suggests then that, for this low 
stacking fault energy alloy, the dislocation 
arrangement in the tensile specimen, deformed at 
low rates of strain and having an initial texture, 
is very different from that in the filings, where the 
strain rate would have been extremely high. It 
would be of interest to compare the dislocation 
arrangement in filings and deformed specimens 
of a low stacking fault energy material using 
transmission electron microscopy. Some selected 
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filings might be thin enough to be examined 
directly in a 1 MeV electron microscope without 
incurring the disadvantage of chemical thinning. 

The microscopic strains obtained by Fourier 
analysis were also anisotropic. If the micro- 
stresses were isotropic, then [/~L2)'100]*/ 
[(eL2)111"] ~ should = E l l l / E l o  o = 3.2 (where 
Ehka is Young's modulus). The observed ratio is 
about 2.0; this is close to midway between the 
extremes of isotropic strains and isotropic 
stresses, which accords with the model assumed 
here for polycrystalline deformation when 
calculating stresses from the lattice parameter 
shifts. 

5.3. Stacking-Fault Probability and Stacking- 
Fault Energy 

The stacking fault probability c~, as determined 
from lattice parameter changes (equation 1) 
represents the difference between the intrinsic 
fault probability c~' and the extrinsic fault 
probability ~", i.e. ~ = c~' - c~". On the other 
hand, the peak asymmetry yields the value 
which is a weighted sum of the extrinsic fault 
probability and the true twin fault probability 
/3', i.e. c~ = 4.5c~" + /3' [32]. As mentioned 
previously, the values of/3 are negligibly small so 
that we may assume cJ' to be zero. Therefore, we 
will consider o~ = c/, i.e. c~ represents the intrinsic 
fault probability. 

The increase in ~ with increasing true strain, 

15 

9 
X 

3 / 

Q. 
-g 

b 
g) 

I 
O 5 

//e 
/ /  FilLINGS 

/ 
/ 

/ 
/ /  

/I 
/ /  

/ 
/ 

/ /  
/ /  

I 
I0 15 

Microstr~in Parameter [<s ' }  

Figure 6 Stacking faul t  probabi l i ty  ~ as a funct ion of 
micro-stra in parameter  (e-2L=so~)l 1 1"" 

e, shown in fig. 3, indicates that faults are being 
continuously generated during the work-harden- 
ing process, the faulted area being approximately 
a linear function of E. The higher value of c~ in the 
cold-worked filings, compared with the tensile 
specimen, is a reflection of the much higher 
speed and severity of the deformation during the 
filing process; this not only introduces larger 
concentrations of dislocations but probably also 
gives non-equilibrium stacking fault widths 
significantly larger than those in the bulk 
specimen [33]. The values calculated by the 
method of slopes are slightly lower than the 
corresponding values computed from all the 
peak displacements probably owing to the fact 
that the displacements of second-order reflections, 
on which the method is heavily dependent, are 
usually somewhat smaller than those predicted 
by the Paterson theory. 

It has been shown [6] that the stacking fault 
energy y can be expressed in the following way: 

2Ehkl a0. (eL~=50~,)hkl * 
Y = ,,]3 F c~ 

where Ehk~ is the elastic modulus for the hkl 
lattice planes and F is a dimensionless factor 
which describes contributions to the stored 
energy of cold work due to single dislocations 
and to the interaction between dislocations. This 
factor has been estimated to equal about 5.0 for 
metals [34]. Therefore, a plot of c~ against 
(EL2)h~d * should be a straight line with a slope 
equal to (2Ehkl a o ) h k l / x / 3 7 F  from which ), can be 
calculated. The plot of interpolated values of  
c~ against (E'~L=50~,)111 * is shown in fig. 6; it 
approximates to a straight line with a slope of 
1.47 • 103 and, rather surprisingly, in spite of 
the dislocation arrangement probably being 
markedly different, the point for the filings lies 
close to the extrapolation of the line passing 
through the points for the bulk specimen. Using 
a value of  9.4 • 1011 dyne/era ~ for E l l l  (since 
E = - v/S1 and v _~ 0.3) we obtain a stacking 
fault energy of 6.1 ergs/cm ~ which compares 
favourably with a value of 5.1 ergs/cm 2 for 
Ag-29 ~ Zn, estimated from the data of Howie 
and Swann [35] (and taking due account of the 
conversion factor of 2.3 for their data proposed 
by Brown [36]). 

6. Summary  
The broadening and displacement of X-ray 
diffraction peaks from a flat tensile specimen of  
Ag-30 at. ~ Cd have been studied while it was 
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d e f o r m e d  in a m i n i a t u r e  tensi le  m a c h i n e  m o u n t e d  
o n  a d i f f r ac tomete r .  T h e  c o n t r i b u t i o n s  to  the  
d i sp l acemen t  due  to  the  l ong i t ud ina l  tensi le  
stress a n d  to  the  s tack ing  faul ts  were  sepa ra t ed  
by least  squares  analysis  a n d  the  b r o a d e n i n g  due  
to  smal l  effect ive par t i c le  sizes and  h igh  mic ro -  
s t ra ins  was  F o u r i e r  ana lysed .  T h e  fo l l owing  
conc lus ions  were  d r a w n :  
(a) T h e  ca lcu la ted  l ong i tud ina l  tensi le  stress in 
the  sur face  was  s ignif icant ly  smal le r  t h a n  the  
t rue  app l i ed  stress o v e r  the  who le  r ange  o f  app l i ed  
t rue  s t ra in  e. T h e  d i f fe rence  was a p p r o x i m a t e l y  
c o n s t a n t  so tha t  the  w o r k - h a r d e n i n g  ra te  in the  
surface  was the  same  as tha t  in t he  in ter ior .  
(b) T h e  s tack ing- fau l t  c o n c e n t r a t i o n  c~ was  
a p p r o x i m a t e l y  a l inear  f unc t i on  o f  �9 r each ing  a 
va lue  o f  0.007 at  m a x i m u m  �9 o f  0.265. 
(c) T h e  effect ive pa r t i c l e  sizes De(100)  a n d  
De(1 1 1) were  a p p r o x i m a t e l y  p r o p o r t i o n a l  to � 9  
and  m a i n t a i n e d  a c o n s t a n t  ra t io  De( l  1 1)/ 
De(100) ,  o f  a b o u t  1.45. Th is  sugges ted  a 
c o n t r i b u t i o n  f r o m  a smal l  t rue  d o m a i n  size D in 
a d d i t i o n  to  tha t  f r o m  faul t ing .  T h e  de r ived  
values  o f  D were  also p r o p o r t i o n a l  to  �9  a n d  
t e n d e d  to a l imi t ing  va lue  o f  a b o u t  300A.  
(d) T h e  s t a n d a r d  dev ia t ion  o f  the  m i c r o s t r a i n  
d i s t r i bu t ion  [(�9 -- ( �9  a- t e n d e d  to l imi t ing  
va lues  at  h igh  �9  fo r  L = 50 A in the  ( 1 0 0 )  
d i r ec t ion  the  d e p e n d e n c e  o f  m i c r o s t r a i n  on  �9 was 
very  s imi la r  to  tha t  o f  the  ca l cu la t ed  t rue  stress. 
(e) T h e  s t ack ing  fau l t  ene rgy  ~ for  Ag-30  at.  
C d  was d e t e r m i n e d  f r o m  the  s lope o f  a p l o t  o f  
aga ins t  [<%2)111 -<�9 this was  l inear  
for  the  who le  r ange  o f  �9 and  inc lud ing  the  p o i n t  
fo r  c o l d - w o r k e d  filings o f  the  s a m e  a l loy  a n d  
gave  a va lue  for  ~ o f  6.1 ergs c m  -~. 
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